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Abstract

In atmospheric models, due to their computational time or resource limitations, phys-
ical processes have to be simulated using reduced models. The use of a reduced
model, however, induces errors to the simulation results. These errors are referred to
as approximation errors. In this paper, we propose a novel approach to correct these
approximation errors. We model the approximation error as an additive noise process
in the simulation model and employ the Random Forest (RF) regression algorithm for
constructing a computationally low cost predictor for the approximation error. In this
way, the overall simulation problem is decomposed into two separate and computa-
tionally efficient simulation problems: solution of the reduced model and prediction of
the approximation error realization. The approach is tested for handling approximation
errors due to a reduced coarse sectional representation of aerosol size distribution in
a cloud droplet activation calculation. The results show a significant improvement in
the accuracy of the simulation compared to the conventional simulation with a reduced
model. The proposed approach is rather general and extension of it to different param-
eterizations or reduced process models that are coupled to geoscientific models is a
straightforward task. Another major benefit of this method is that it can be applied to
physical processes that are dependent on a large number of variables making them
difficult to be parameterized by traditional methods.

1 Introduction

In numerical simulations of complicated physical phenomena, one usually has to bal-
ance between the model accuracy and the computation time. Reduction in computa-
tion time is typically obtained by using reduced models for some of the functions in
the model. The use of reduced models, however, result in errors in model output. The
errors are referred to as the approximation errors (AE).
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In this paper, we consider the approximation errors caused by coarse discretization
of aerosol size distributions in sectional aerosol models. In sectional models, the con-
tinuous aerosol particle size distributions are represented with discrete size sections
(e.g. Weisenstein et al., 2007; Jacobson, 2001; Rodriguez and Dabdub, 2004; Kokkola
et al., 2008). The accuracy of the description of the size distribution increases with in-
creasing number of size sections. The computational demand of the model, however, is
heavily increased with the number of the sections. Therefore, a compromise between
the model accuracy and the computational time has to be made to construct a feasible
model for simulations of atmospheric scale.

The main mechanism by which atmospheric aerosol particles affect the climate is by
modifying the concentration of cloud condensation nuclei (CCN) followed by changes
in cloud droplet number concentration (the indirect effect of aerosols). While it is well
known that the number of CCN in the atmosphere is increasing, the effect of these
additional CCN on cloud properties is still the largest single source of uncertainty in
the current estimates of the anthropogenic radiative forcing (Forster et al., 2007). Thus,
solving the cloud activation of the aerosol particles more accurately, would reduce the
uncertainty in the estimated aerosol indirect effect. Current aerosol-climate models
include parameterizations for calculating cloud activation of aerosol that use the above
mentioned sectional approach (Abdul-Razzak and Ghan, 2002; Fountoukis and Nenes,
2005). Nevertheless, coarse size resolution of the aerosol size distribution that is used
as an input for a cloud activation parameterization translate to approximation errors in
the calculated aerosol indirect effect.

Recently, an approach for compensating approximation errors in inverse problems
was proposed by Kaipio and Somersalo (Kaipio and Somersalo, 2005). The ap-
proach is known as the approximation error approach. This far, the approach has
mainly been applied to so-called soft field tomography imaging problems that are re-
lated to estimation of spatially distributed parameters of partial differential equations
from boundary measurements. In such problems, the approach has been success-
ful, for example, in compensation of approximation errors due to coarse finite element
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discretization (Arridge et al., 2006; Nissinen et al., 2009), unknown nuisance parame-
ters (Nissinen et al., 2009, 2011; Kolehmainen et al., 2011), and the truncation of the
computational domain (Lehikoinen et al., 2007; Kolehmainen et al., 2009). The main
idea in the approximation error approach is to model the error between the accurate
and approximate computational models as an additive noise process in the measure-
ment model. The realization of the approximation error noise is obviously unknown and
cannot be computed without solving the accurate model and knowing the unknown
parameters. However, given the prior probability density models of all the unknowns,
the inverse problem can be marginalized over the unknown approximation error in an
approximate way by utilizing a Gaussian estimate for the joint probability density of
the approximation error and the unknown parameters. For a detailed explanation, see
Kolehmainen et al. (2011).

In this paper, we propose a novel approach for handling approximation errors in simu-
lation models. The approach is an extension of the approximation error approach. Sim-
ilarly as in applications of the approximation error approach to inverse problems, the
discrepancy between the outputs of accurate and reduced models is modelled as an
additive approximation error noise process in the simulation model. However, whereas
in the framework of inverse problems the uncertainty related to the approximation er-
rors is taken care of by marginalization, here we propose to construct a computationally
low-cost predictor model that computes an estimate for the realization of the approxi-
mation error given in the input parameters and solution of the reduced model. This way
the solution of the simulation problem is decomposed into a computationally efficient
approximation of solving the reduced computation model and estimating the value of
the additive approximation error.

One computationally simple and light-weight, and recently widely used function ap-
proximation approach is to employ Rfs. The RFs are predictive models introduced in
Breiman (2001). An RF model consists of an ensemble of binary tree predictors. Each
of these tree predictors is trained based on the training data.
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The aim of the RF model construction is to get numerous tree models that slightly
differ from each other. This is achieved by introducing randomization in the tree con-
struction. The constructed RF models are further used for the function output predic-
tion. The prediction of the RF model is computed by averaging the predictions of each
(almost) unbiased tree models in the ensemble. This averaging should therefore in-
crease the accuracy of the RF model over a single tree prediction accuracy. Recently,
the RF models have been applied to classification and regression problems includ-
ing classification of climate zones (Bechtel and Daneke, 2012), earthquake induced
damages (Tesfamariam and Liu, 2010) and remote sensing data (Pal, 2005), disease
prediction (Munro et al., 2006; Yao et al., 2013). In some of the cited papers, a com-
parison between different algorithms were carried out. Despite of its simplicity, the RF
was observed to perform at least equally well as the more complicated algorithms in
classification and regression problems.

We employ the RF approach for construction of the predictor model for the approx-
imation errors in the simulation model. The training data for the RF algorithm is a set
of approximation error realizations between the accurate and reduced models corre-
sponding to a set of random samples of the input parameters that are sampled from the
prior probability density models. The computation of the training data involves solution
of the computationally demanding accurate model as many times as the number of
samples. This step, however, can be done as precomputation and needs to be carried
out only once. Given the trained RF model, the accurate model can then be approxi-
mated by the sum of the reduced model and the predicted approximation error in the
actual simulations.

The proposed approach is evaluated in the case of cloud droplet number concen-
tration (CDNC) estimation from sectional aerosol particle size distribution using the
cloud droplet activation parameterization by Abdul-Razzak and Ghan (2002). We con-
sider the approximation errors caused by using a coarse sectional representation of
the aerosol particle size distributions. The results show that the proposed approach

2555

Title Page
Abstract Introduction
Conclusions References
Tables Figures
1< >l
< >
Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion


http://www.geosci-model-dev-discuss.net
http://www.geosci-model-dev-discuss.net/6/2551/2013/gmdd-6-2551-2013-print.pdf
http://www.geosci-model-dev-discuss.net/6/2551/2013/gmdd-6-2551-2013-discussion.html
http://creativecommons.org/licenses/by/3.0/

10

15

20

25

gives a significantly improved accuracy over the conventional way of using the reduced
model only with the cost of a small increase in the computational burden.

The rest of the paper is organized as follows. The approximation error approach
and the RF models are explained and the approach for prediction of approximation
errors using the RF models is proposed in Sect. 2. In Sect. 3, the cloud droplet acti-
vation parameterization is briefly reviewed. In Sect. 4, the proposed approach is ap-
plied and evaluated in the case of using coarse size resolution aerosol microphysics
model together with cloud droplet activation parameterization by Abdul-Razzak and
Ghan (2002) referred to as ARG from here on. The conclusions are given in Sect. 5.

2 Correction of approximation errors with Random Forests
2.1 Approximation error model

Let f(x) denote the sufficiently accurate but computationally too time consuming com-
putational model. Instead of using the model 7(x), one wishes to use a computationally
low cost reduced model

f(%), X=P(x) (1)

where P is typically a model reduction mapping from higher dimensional space to
a lower dimensional space. However, the approximation errors caused by the model
reduction can often render the simulation results unreliable, or even useless.

Using the approximation error model (Kaipio and Somersalo, 2005), we write the
simulator as

f(x) = F(R) + [f(x) - f()?)]
=f(X)+e (2)

where e(x) = f(x) — f(X) represents the approximation error. Notice that model (2) is
accurate but the exact realization of the approximation error for a given realization of
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input parameters x can only be evaluated by solving the computationally demanding
accurate model f(x), which we wish to avoid in the first place. In the present work, our
objective is to construct a computationally fast predictor model for the realization of the
approximation error

e~ J(x) (3)
so that the simulation can be approximated in a computationally efficient form
F(x) ~ (%) + §(X) (4)

for a given realization of the reduced parameterization Xx. For this, we model (x,€) as
vector valued random variables and utilize the RF model for the construction of the
predictor g(X).

2.2 Simulation of training data for the Random Forest algorithm

The construction of a predictor model g(x) requires a set of feasible realizations of
the random variables {X,,e,,k =1,...,N}. Firstly, this step involves drawing N ran-
dom realizations of x, from the prior probability density model m(x), or alternatively,
one can utilize set of existing data (e.g. measured realizations of x) if available. Sec-
ondly, one has to compute realizations €, = f(x,) — f(P(xk)) of the approximation error
for each of the samples to obtain the training data {x,,e,,k =1,...,N}. Obviously,
this step involves solving the accurate and computationally demanding model f(x) N
times. However, this computationally demanding part has to be done only once for the
construction of the simulation model (4). This model can then be used to approximate
the accurate model f(x), for example, within aerosol-climate models where the com-
putational times are a critical issue. The outline of the simulation of the training data is
presented in Algorithm 1.
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Algorithm 1: Simulation of training data.

Inputs: Accurate and approximative models f(x) and f(X), respectively, prior probability

distribution model 7(x) for the input variable x, model reduction mapping P and the

number of samples N to be used in the precomputation steps. Output: Training data

{X,, €} for the RF model

1:fori=1,..,N do

2: Draw a random sample x; from the probability distribution 7(x) (or use sample from
a set of measured realizations of x).

3: Simulate the accurate model, i.e. compute f(x;).

4: Simulate the approximate model, i.e. compute f(P(x,-)).

5: Add a sample (X;,€,) where X; = P(x;) and €, = f(x;) - f(P(x;)) to the training set.

6: end for

2.3 Random Forests

Rfs developed by Breiman (2001) are used for classification and regression. The RF
algorithm uses training data to construct an RF model used for predicting a class in
which the given input belongs (classification) or the output of a function the input would
give (regression). An RF model consist of an ensemble of classification or regression
trees. Each tree in the RF is grown independently of each other and based on a slightly
different training set to avoid overfitting of the model. In particular, each training set is
obtained as random subset of the original training set. Further, the reason for construct-
ing an ensemble of tree models, not a single tree model, is to increase the accuracy
and reduce the uncertainty of the overall prediction. In this paper, the RF models for
regression are considered.

In case of regression, the RF model consists of an ensemble of regression tree
models. A regression tree model is a sequence of rules that is used for function output
prediction with given inputs. The sequence of rules forms a binary tree structure and it
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is evaluated by following the nodes starting from the uppermost node referred to as the
root node. Each node rule consists of a pair of input variable index and split threshold
value. In the node evaluation, the value of the input variable indicated by the index is
compared with the split threshold value. If the input data variable value is less than
the threshold value the left branch of the node is followed. In other cases, the right
branch is followed. The tree structure is followed until a node that has no child nodes
is reached. These nodes are referred to as the leaf nodes. The tree model output
prediction is selected as the output value indicated by the leaf node. An illustrative
example of a regression tree is shown in Fig. 1.

As stated above, an ensemble of trees is constructed with the training data {x,, €}
The samples X, and €, are considered as the inputs and outputs of the function,
respectively, which the RF model to be constructed is approximating. We use a slightly
modified version of the original RF algorithm. The outline of the modified algorithm is
given in Algorithm 2.
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Algorithm 2: The modified algorithm for growing a Random Forest model.

Input: Training data set {X,,€,, kK =1,...,N}, number of trees in the forest N5, Number
of input variable candidates at each split Nj,;an4s, maximum number of training data
samples assigned to a leaf node Npasampies @Nd the number of split threshold candidates

Nepiitp- Output: Random Forest A
1: for k =1,..,Nyees dO
2: Add root node R, ; to the tree.

w

data to the root node.
4: while A non-terminated leaf node exists do
5: Select a non-terminated leaf node k.
6: Construct a random set of Niyc,ngs Split variable candidates.
7: Construct a random sets of N
split variable candidate.

plitp

8: Find the split variable — split value pair that has the smallest sum of the sample
variances of e in the splitted sets.

9: Split the node according to the best split and assign the training data to the child
nodes according to the rule.

10: If a child node has less than N aysampies S@MPples assigned to it, terminate it and
compute the output of the node as the average of the training samples assigned
toit.

11:  end while

12: end for

Assign a random bootstrap sample with replacement (N samples) from the training

split threshold values corresponding to each

In our training algorithm, the training data set {x,,€e,, kK =1,...,N}, the number of
trees in the forest Ny..qs, the number of input variable candidates at each split Nipcangs,
maximum number of training samples assigned to a leaf node Npaysamples @nd the num-
are given to the training algorithm as inputs. The
RF model to be grown consists of N, regression trees each of which are constructed
as follows. First, a bootstrap sample consisting of N training data samples is drawn
with replacement from the training data set and assigned to the root node of the tree.

ber of split threshold trial points Ny,
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Second, Nipcangs UNique input variable (elements of vector x) candidates are randomly
selected. Next, the training data samples assigned to the current node are splitted into
two non-empty sets corresponding to N, randomly selected split threshold candi-
dates for each input variable candidate. The input variable—split threshold candidate
pair that results in the smallest sum of € variances in the non-empty sets is selected for
the split. Two child nodes for the current node are created, and the training samples are
assigned to them according to the selected input variable and threshold candidates. If
a node has less than Ny axsamples training samples assigned to it, it is a leaf node and
the sample average of ¢ of the training samples assigned to the node is computed and
used as the output value of the node. The splitting of the nodes that have more than
Niaxsamples training samples assigned to them is carried out similarly as for the root
node until no more nodes in the tree to be splitted are left.

The constructed RF model is used for prediction as follows. All the tree models are
evaluated separately by following the tree structures starting from the root nodes. In
each node, the value of the input variable indicated by the node rule is compared with
the split threshold of the node. If the variable value is less than the threshold, the tree is
followed to the left child node. Otherwise the right child node is followed. This procedure
is repeated until a leaf node is reached and the output value of the leaf node is taken
as the tree output. The overall prediction of the RF model is computed as the average
of all the individual tree model outputs, giving us the prediction of the approximation
error

€ = §(X). (5)

The outline of the RF model evaluation is shown in Algorithm 3.
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Algorithm 3: The simulation of a Random Forest model.

Input: Model input x, and the RF model with N, trees and nodes with information
{l,a,1,1,y} where | and a are the input variable index and the related threshold, /, and
I indices to left and right child nodes, and y the output of the node. Output: Random
Forest output y.

1: for k =1,.., Nyees dO

2: Set the root node as the current node to be evaluated
3: while The current node is not a leaf node do

4: if x(/) < a then

5: Set /_ as the current node

6: else

7: Set I as the current node

8: end if

9: end while

10: Sety, =y of the leaf node reached

11: end for

12: Compute y as the average of {y;,...,yn,_ }-

3 Cloud droplet activation parameterization

Formation of cloud droplets in the atmosphere is a dynamical process affected by local
meteorology and aerosol particles acting as cloud condensation nuclei. In atmospheric
models, this process is parameterized. In the most sophisticated parameterizations,
CDNC is calculated based on aerosol particle size distribution and chemical composi-
tion, pressure, temperature and vertical velocity of air parcel forming the cloud (Abdul-
Razzak et al., 1998; Abdul-Razzak and Ghan, 2002; Nenes and Seinfeld, 2003).

The simulations in this study are conducted using the SALSA sectional aerosol
model developed for atmospheric models (Kokkola et al., 2008; Bergman et al., 2012).
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In SALSA, aerosol size distribution is divided to different subranges based on the par-
ticle size (3—50nm, 50-700 nm, 700—10 000 nm). The size resolution differs between
the subranges depending on how sensitive the aerosol processes are to particle sizes
of given subrange. When using the default setup of SALSA, it has 10 size sections di-
vided so that there are 3 sections in the first subrange, 4 in the second subrange, and
3 in the third subrange. A more detailed description of the model is given by Kokkola
et al. (2008).

SALSA includes all relevant microphysical processes such as condensation of sul-
fate and organic carbon, nucleation of new particles, hydration, and coagulation. How-
ever, in this study we are only interested in the effect of the size resolution on the cal-
culated number of cloud droplets, and the SALSA is used only to create aerosol size
distribution and to calculate the CDNC using the ARG parameterization. Also, we are
omitting the first subrange as usually the cloud droplet nucleation in the atmosphere
is not affected by these particles as they are too small to act as cloud condensation
nucleus. For simplicity, in this study we have also assumed that aerosol is composed of
only one highly hygroscopic compound (sulphate), one slightly hygroscopic compound
(organic carbon) and one non-hygroscopic compound (dust).

4 Models, simulations and results
4.1 Accurate and reduced models

Let 7(x) € IR denote the sufficiently accurate computational ARG cloud droplet activa-
tion parameterization that computes the value of the CDNC for the given input x. The
input parameter vector x contains aerosol particle size and composition distributions,
vertical velocity, pressures and temperature information. In the following computations,
the number of size sections for the representation of the particle size distributions is
70, see Table 1. With this discretization, the average simulation time of the accurate
model is about 1 ms.
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In the parameter vector X of the reduced model 7(X), the number of size sections
for the aerosol particle size distributions have been significantly reduced. We consider
two different levels of model reduction. In the first one, the number of size sections is
7 and in the second one 4, see Table 1. The average computation times are about
0.11ms and 0.07 ms for the 7 sections and 4 sections parameterizations, respectively.
Thus, when reducing from 70 size sections to 7 or 4 sections the average reductions in
computation times are about 89 % and 93 %, respectively.

4.2 Construction of the RF predictor model

The size of sample set {x,} was selected as N = 50000 for the construction of the
training data (Algorithm 1). The realizations {x,} of the input parameters were drawn
from their prior probablity distribution models, which were selected so that the realiza-
tions are plausible representations of their values in the nature. The aerosol particle
number distribution n = n(d), where d is the diameter of the particle, was modelled as
a sum of three log-normal modes representing the Aitken, accumulation and coarse
mode aerosols:

n(d)= 3 ni(d) (6)

i=1
where each of the modes was modelled by

Miot, i

d\/2m(log(c;))?

where the ny ; is the total number of particles in mode /, and o; and y; the shape and

log-scale parameters of mode /. The parameters of the prior probability distribution

models used in the generation of the vertical velocity w, pressure p, temperature T,

and the particle number distribution parameter n;, o;, u; samples are shown in Table 2
2564
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and the respective probability density functions are shown in Table 3. The histograms
of the temperature, pressure and vertical velocity samples, and the particle number
distribution parameters in the training sample set {x,} are shown in Figs. 2 and 3,
respectively. The aerosol particle volume size distributions were constructed with the
particle number distributions of the modes and randomly distributed volume fractions
of each compound. The volume fractions for the sulphate was drawn from an uniform
distribution U(0.01,1). Further, the fractions of dust and organic carbon were drawn
from uniform distributions such that the sum of the compound fractions was 1.

Figure 4 shows the output values of the accurate parameterization against the output
of the approximate parameterization for the set of training samples {x,} (i.e. the points

in the figure are (x},y}) = (f()?j,f(xj)))). In the top panel, the reduced model uses

7 size sections for the size distributions and in the bottom 4 size sections. The black
line shows the identity line y = x corresponding to the case that accurate and reduced
models match. The average relative errors in the CDNC values were 20.4 % and 55.7 %
for the 7 and 4 size sections parameterizations, respectively. The reason for the lower
CDNC with the smaller number of size sections is the lower maximum supersaturation
when using the ARG parameterization.

Given the samples {x,}, the realizations of the approximation error were simulated
as

{ex =log(f(x,)) = log(F(P(x,))), k = 1,...,N}. (8)

Here the logarithmic scale for the CDNC values was selected based on preliminary
tests in which this selection slightly improved the accuracy of the RF models. The
histograms of the approximation errors e for both the 7 and 4 size sections parameter-
izations are shown in Fig. 5.

Finally, the sample sets {x,, Iog(f(P(xk)))} and {e,} were used as the RF training set
inputs and outputs, respectively, and the RF models were trained as described in the
Sect. 2.3. Also here, the addition of logarithms of the coarse parameterization outputs
in the training set slightly improved the RF model accuracy and was therefore used.
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Once the RF predictor g was constructed, the output of the accurate simulator 7(x)
was approximated with

f(x) ~ F(X) = exp (log(f(X)) + §(X,(X))). (9)
4.3 Results

To evaluate the proposed approach, multiple RF predictor models for the approximation
errors corresponding to both approximate ARG parameterizations, with 7 and 4 size
sections, were constructed with different parameters of the Algorithm 2. All possible
combinations of parameter sets {25,50, 100,200}, {5,10, 15,25}, {5,15,25,100}, and
{25,75} for Nieess Nipcandss Nmaxsampless @Nd Ngyjito, respectively, were used. To avoid
overoptimistic results, the constructed AE models were evaluated with a separate val-
idation set of 25000 samples of ARG model inputs. The validation set was sampled
similarly as the training set but the samples were not included in the training of the RF
model.

All predictor models were evaluated using the validation set, and the mean squared
error (MSE) ey sg and mean relative error (MRE) e g estimates were computed. The
error estimates were computed as

N
use = 0 > (F(x) - (%) (10)
i=1
and
. _l%lf(xi)_f()?/)l (11)
MRE ™ N i=1 |f(X/)| .

As the construction of an RF model is random, the tests were repeated 50 times for
each AE model to also evaluate the random variations in the results. The average
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MSE and MRE, average computation time of the approximation error model, memory
required to store the RF model, and the model parameters for both of the approxi-
mate parameterizations (X) corresponding to 20 different combinations of RF training
parameters (Nyeess Nipcands: Nmaxsampless Nspiitp) @re given in Table 4 for the parame-
terization with 7 size sections and 5 for the parameterization with 4 size sections. The
bottom row in both Tables gives the respective errors between the accurate parameter-
ization f(x) and reduced parameterization f(X) without approximation error correction.
The CDNC values computed with the accurate parameterization f(x;) as a function of
the AE corrected CDNC values using the predictor g with the lowest MSE error are
shown in Fig. 6. Top row shows the case for the reduced model with 7 size sections
and bottom row the case with 4 size sections for the particle size distributions.

The results show that by using the AE correction with the RF predictor model, both
the MSE and MRE errors are significantly decreased. In the case of the reduced param-
eterization f(X) with 7 size sections, the RF training parameter selections Nipcands = 25,
Nmaxsamples = 95 Nspiiy = 25 and Nyq¢s = 200 resulted in the overall model in which both
the MSE and MRE were the smallest. Here, the approximation error correction de-
creased the MSE error by more than one order of magnitude and the MRE was de-
creased by more than 10 %. In the case of the reduced parameterization (x) with 4
size sections, the lowest MSE and MRE were obtained with the RF training parameters
Nipcands = 25, Nimaxsamples = 15; Ngpiity = 75, and Nyees = 200. Also here, both the MSE
and MRE errors were significantly decreased. Notice that the MSE errors of the 4 size
sections parameterization with the approximation error correction are smaller than the
MSE errors of the uncorrected 7 size sections parameterization.

The results also show that the RF model training parameters did not significantly
affect the accuracy of the AE model. The RF training parameter affecting the accuracy
of the model most was the number of trees in the forest. The randomness in the RF
model training caused only minor variations in the resulting RF models showing the
robustness of the approach.
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The average times to simulate the AE models varied between 0.05 and 0.58 ms in
the case of 7 size sections parameterization and between 0.04 and 0.49ms in 4 size
sections parameterization on a standard desktop computer. The average time to simu-
late the reduced model 7(X) with 7 and 4 size sections were about 0.11 ms and 0.07 ms,
respectively. These AE model running times for computing f()”() resulted in overall av-
erage runtimes of 0.16—0.69 ms for the 7 size sections and 0.11-0.56 ms for the 4 size
sections AE corrected parameterizations. Thus, the reduction in computation times of
the approximation error corrected models f(X) is in the range 31-89 % compared to
the run time of the accurate model f(x). Note that the errors using the fastest RF pre-
dictor model with the least number of trees is only sligthly larger (less than 1% in the
MRE error) compared to the slowest RF model with the largest number of trees. By
using the RF models with the least number of trees, one would still get more than an
order of magnitude improvement in the accuracy compared to the reduced model ()
with an increment of computation time from 0.11 ms to 0.16 ms for the 7 size sections
model and from 0.07 to 0.11 ms for the 4 sections model. Note that the use of, for ex-
ample, the RF predictor model with the training parameters Nyges = 25, Nipcangs = 25,
Nmaxsamples = 15, and Ngyi, = 15 resulted in the overall model with only slightly larger
(about 0.3 %) MRE error and 0.46 ms faster running time compared to the RF model
with the smallest MRE error in the case of 7 size sections parameterization. By using
the fastest RF models listed in Tables 4 and 5, one would still get more than an order of
magnitude improvement in the MSE error compared to the reduced model f(X) with an
increment of computation time from 0.11 ms to 0.18 ms for the 7 size sections model
and 0.07-0.11 ms for the 4 sections model. Notice that the computation time of the
error prediction by the RF model is independent of the computation times of f or f.
Thus, the relative time saving by the proposed approach will increase as the compu-
tation time of f increases. The memory requirement for storing the RF models varied
between 10 to 140 MB depending on the number of trees. This can be considered as
a low amount for modern computers.
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5 Conclusions

Due to computational time and resource limitations related to atmospheric models, sev-
eral physical processes have to be simulated using reduced models. The use of a re-
duced model, however, induces approximation errors to the simulation results. In this
study, we presented a novel approach to correct these approximation errors and ap-
plied it in the calculation of cloud droplet number concentration (CDNC). In the studied
case, the approximation error (in CDNC) is caused by coarse sectional representation
the aerosol particle distribution.

In our approach, the approximation errors caused by model reduction are modelled
as an additive approximation error noise process in the simulation model and the RF
algorithm is utilized for construction of a predictor for the realization of the approxima-
tion error for given model input parameters. This way the accurate simulation model
can be approximated in a computationally fast form by evaluating the reduced model
and the prediction of the approximation error.

It was found that the RF approach gives significantly smaller errors in the CDNC
calculation than using the reduced model alone with a small increment in the compu-
tational cost. Also the systematic errors caused by reduced model accuracy can be
efficiently eliminated.

Another significant result in this study was that if the number of size sections were
further decreased from 7 to 4, the errors in the RF corrected CDNC of the 4 sections
model were lower than the errors of the uncorrected 7 sections model. This shows that
the RF method could be useful in reducing the number of size distribution parameters,
when aerosol models are developed for simulations of decades or centuries. As the
method is in no way limited to sectional approach, it could be applied for reducing
number of modes in modal models as has been done by, e.g. Liu et al. (2012).

Here the RF method was employed in the calculation of CDNC with variables typ-
ical to atmospheric models. The method can be easily and efficiently extended to
take account more complex aerosol including for example surface active Sorjamaa
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et al. (2004) or semivolatile aerosol compounds Romakkaniemi et al. (2005) by simply
adding new variables to the training data. The method is highly efficient especially in
the case of physical processes, which have been found to be difficult to parameterize
with traditional methods due to high dependence of the processes on several param-
eters. Further, the proposed approach is rather general and extension of it to different
physical simulation models is a straightforward task.
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Table 1. Size section configurations of the cloud droplet activation parameterizations used in

simulations.

Total number of size
sections in the model

Size sections in the

diameter range 50—700nm  diameter range 0.7-10 pum

Size sections in the

70
7
4

40
4
2

30
3
2
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Table 3. The notations used for the probability distributions and their probability density func-

tions. (k) denotes the Gamma function.

Notation

Probability density function m(x)

x ~U(a,b)
x ~ N (x,0%)

x ~T(k,0)

=, a<x<b
0, otherwise

1 (x = x)?
exp( -
oV2n 202
1

5)

— xTex
F(k)6* J

6

)
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Table 4. Training parameters and results of the AE correction in the case of 7 size sections
parameterization: number of trees in the RF model Ny, the RF training parameters Ni;cangs;
Naxsampless Nspiitp> the minimum, mean and maximum value for the mean squared errors (MSE)
and mean relative error (MRE), average time used for evaluating the RF model ¢, and the

memory required to store the RF model M.

Nices  Nipcands  Nmaxsamples Nepip mean(€eysg) (Cm_e) mean(eyge) (%) t(ms) M (Mb)
200 25 5 25 1.18x 10° 8.1 0.52 139.5
200 25 15 25 1.20x 10° 8.1 0.41 56.4
200 25 15 75 1.21x10° 8.1 0.41 56.5
100 25 15 75 1.22x10° 8.2 0.19 28.2
50 25 5 75 1.23x 10° 8.2 0.13 34.9
100 25 25 25 1.24 x 10° 8.3 0.16 18.0
100 25 25 75 1.26 x 10° 8.3 0.17 18.0
25 25 15 25 1.27x10° 8.4 0.06 71
25 25 15 75 1.28 x 10° 8.4 0.06 71
25 25 25 75 1.32x10° 8.4 0.06 45
200 15 5 75 1.39x 10° 8.9 0.54 140.9
200 15 15 75 1.41x10° 8.9 0.43 57.2
100 15 15 25 1.42 x 10° 9.0 0.20 28.5
50 15 5 75 1.45x 10° 9.0 0.13 35.2
50 15 15 25 1.45x 10° 9.1 0.10 14.3
100 15 25 75 1.46 x 10° 9.1 0.17 18.3
25 15 5 25 1.47 x10° 9.2 0.08 17.6
200 25 100 75 1.48 x 10° 8.8 0.19 9.7
50 15 25 75 1.49x 10° 9.1 0.09 9.1
50 25 100 75 1.50 x 10° 8.9 0.06 2.4
7 size sections parameterization without AE correction 1.76 x 10* 20.4 0.11
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Table 5. Training parameters and results of the AE correction in the case of 4 size sections
parameterization: number of trees in the RF model Ny, the RF training parameters Ni;cangs;
N maxsamples: Nspiito» the minimum, mean and maximum value for the mean squared errors (MSE)
and mean relative error (MRE), average time used for evaluating the RF model ¢, and the

memory required to store the RF model M.

Ntrees Nipcands Nmaxsamples Nsplitp mean(eMSE) (Cm_e) mean(eMRE) (%) t (ms) M (Mb)
200 25 5 25 4.25x10° 24.0 0.45 139.4
200 25 5 75 429x10° 24.2 0.45 139.5
200 25 15 75 4.32x10° 24.2 0.36 55.6
100 25 15 75 4.35x10° 24.3 0.17 27.8
50 25 15 25 4.37x10° 24.2 0.08 13.9
50 25 5 75 4.39x10° 24.4 0.11 34.9
100 25 25 75 4.41x10° 24.4 0.14 17.4
25 25 15 25 4.47x10° 245 0.05 6.9
200 15 5 75 451%x10° 24.5 0.46 140.5
25 25 5 75 452x10° 24.7 0.06 17.4
100 15 5 75 455x10° 24.6 0.22 70.2
100 15 5 25 456 x10° 24.5 0.22 70.2
100 15 15 75 461x10° 24.6 0.17 27.8
50 15 15 25 4.66 x 10° 24.7 0.08 13.9
50 15 15 75 4.67 x10° 247 0.08 13.9
100 15 25 75 4.70x10° 247 0.14 17.4
50 15 25 75 476 x10° 24.8 0.07 8.7
25 15 15 75 4.81x10° 25.0 0.05 7.0
25 15 25 25 4.87x10° 251 0.04 43
200 25 100 75 4.98 x10° 251 0.15 8.4
4 size sections parameterization without AE correction 1.05x 10° 55.7 0.07
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Fig. 1. An illustrative example of a regression tree.
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Fig. 2. Histograms of vertical velocity w, pressure p and temperature T in the sample set used
for constructing the approximation error samples.
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Fig. 3. Histograms for number concentrations of particles n;, scale parameters u; and shape

5

Niors(om ™)

10

2000

1000

2000

1000

2000

1000

55 60 65 70 75
e (nm)

120 140 160 180

pro(nm)

0
600 800 1000 1200 1400

1e3(nm)

parameters o; for the log-normal modes / = 1,2,3.

2580

4000

2000

4000

2000

4000

2000

12 14 16 18

ai

Title Page
Abstract Introduction
Conclusions References
Tables Figures
(R >l
< >
Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion


http://www.geosci-model-dev-discuss.net
http://www.geosci-model-dev-discuss.net/6/2551/2013/gmdd-6-2551-2013-print.pdf
http://www.geosci-model-dev-discuss.net/6/2551/2013/gmdd-6-2551-2013-discussion.html
http://creativecommons.org/licenses/by/3.0/

i I L ! I 1
0 500 1000 1500 2000 2500 3000 3500 4000
J@)(em™)

0 _a I | | ! I L 1 1
0 500 1000 1500 2000 2500 3000 3500 4000

Fig. 4. Computed cloud droplet number concentrations (CDNC) computed with the accurate
model 7(x) as functions of CDNCs given by the approximate model f(x). Top: approximate
parameterization with 7 size sections for the aerosol particle size distributions. Bottom: approx-
imate parameterization with 4 size sections for the aerosol particle size distributions. Black solid
lines represent the identity lines.
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Fig. 5. Histograms of the approximation errors ¢(x). Top: approximate parameterization with 7
size sections for the aerosol particle size distributions. Bottom: approximate parameterization
with 4 size sections for the aerosol particle size distributions.
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Fig. 6. Computed cloud droplet number concentrations (CDNC) computed with the accurate
parameterization f(x;) as functions of CDNCs given by the approximation error corrected pa-

rameterization f()"(j). Top: reduced parameterization (X) with 7 size sections for the represen-

tation of the aerosol particle size distributions. Bottom: reduced parameterization (X) with 4
size sections for the representation of the aerosol particle size distributions. Black solid lines
represent the identity lines.
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